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Abstract—This paper is an attempt to examine aggregation 
behavior in swarm robotics in a broader context. It examines 
biomimicry and the caution which must be employed therein. 
Motivated by social behavior among insects, birds, and fish, it 
seeks to test a potential aggregative swarm model which seeks to 
mimic the dynamics governing swarm behavior in social animals 
using an attractant-repellant force interaction formula. 
Furthermore, the dynamics of predator evasion are likewise 
examined and potential applications of swarm technology 
described in this paper are explored. 
 

I. INTRODUCTION 

OR centuries, poets and philosophers have been 
fascinated by large groups of same-species 

animals tending to cluster together – flocks of birds, 
schools of fish, colonies of ants, honey-bee hives. 
The assumption made is that group dynamics arise 
from decentralized local interactions between 
individual agents and between agents and the 
environment. [1] These swarms form for a number 
of benefits, including enhanced protection, 
increased hunting ability, greater ease of travel, 
predator confusion, or to perform tasks which 
otherwise would have been impossible for a single 
such organism, such as carrying heavy objects, or 
building large and intricate colonies as in the case 
of ants [2]. 

In robotics, separate robots can be coordinated 
together to perform certain tasks as a team which 
otherwise could not be accomplished using a single 
robot, or would be prohibitively complex, expensive 
or time-consuming. [3] Thus, my motivation in 
pursuing swarm robotics stems from observing self-
organizing behavior patterns in social animals and 
attempting to decode the principles driving their 
behavior in hope to adapt these principles for 
potential robotics applications – biomimicry. 

In addition to benefits inherited from its 
motivator, a swarm of robots (autonomous agents) 
has the potential for a number of advantages over its 
single-agent-system counterpart, including 

enhanced failure tolerance, ease of adaptability, 
versatility, scalability, rapid wide-area coverage, 
security (due to decentralized information), and of 
course economy. [4] 

A simple and oft-overlooked aspect of swarm 
robotics containing its own subtle intricacies is 
aggregation – the process of assembling discrete 
autonomous entities into a swarm. It is this feature 
which gives rise to the patterns we see in flocks of 
birds and schools of fish, and it will be examined 
thoroughly – using analytical and numerical 
methods, apparently complex swarm behavior can 
be modeled and interpreted. [5] 

Lastly, I will touch upon practical motivations for 
swarm robotics – that is, its potential 
implementations in biomedicine, micro-assembly, 
mine detection, cleaning tasks, and so forth – and 
the feasibility of such applications in the near 
future. [6] 

 

II. BIOMIMICRY 

HE inspiration for swarm robotics usually stems 
from biological sources, so it is apt to examine 

them in context. Firstly, it is important to note the 
distinction between pattern and function for swarm 
characteristics. Human perception can be quite 
misleading: some obvious features of a 3D swarm, 
such as a funnel or torus shape, have analogues 
incarnations in 2D swarms and thus appear to be 
adaptive to group dynamics, but such shapes occur 
so frequently in nature that they could be considered 
evolutionarily neutral. On the other hand, dynamic 
patterns such as coordinated maneuvers have clear 
biological interpretations such as predator 
avoidance and confusion and can be considered 
group dynamics. [7] 
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Once essential evolutionary group dynamics are 
identified, it is possible to create a model to 
describe the behavior of the group. 

 

III. MODELING 

PPROACHES to modeling can be divided into 
two groups: Eulerian and Lagrangian. Eulerian 

models do not consider individuals explicitly but 
instead focus on population densities. Lagrangian 
models specify the state of each agent in the swarm, 
and are more pertinent here. [5] 

Most swarm aggregation phenomena can be 
modeled by an attractant-repellant profile, whereby 
individual interactions are characterized by long 
range attraction and short-range repulsion. [8] That 
is, each agent is modeled as an inertial mass upon 
which various forces act: locomotory forces such as 
drag, aggregative force such as long range 
attraction, and random forces due to individual 
agent motion. [7] Agents are drawn towards other 
agents to form swarms, are repelled by agents in 
close proximity to avoid collision, and are repelled 
from predators to avoid being eaten. Thus, the 
dynamics of the emergent patterns can be described 
using Lagrangian models which specify the state of 
each agent as it undergoes changes in velocity and 
direction as dictated by said forces. 

Some more modeling considerations include 
numerical preference, or the rule size. This refers to 
the number of neighbor each agent pays attention to 
– it can be a set number, have a maximum, depend 
on orientation or simply include all agents within 
range. 

 

IV.  MODELING APPLET  

HE specific equations used to model the forces 
vary widely, from square waves to trigonometric 

functions. I have experimented with various options 
and have chosen a linear force/distance relationship 
(Fig 1c) for simplicity. 

My modeling testbed – “Red Herring” was 
created from scratch using the Java 1.4.2.05 SDK. It 
consists of a functional graphical user interface 
which allows for selection of swarm size, sensor 
range, time delay between steps and equilibrium 
distance – the distance at which 2 swarm agents 
exert no aggregative “forces” on each other. Each 
identical agent is displayed as a circle with a line 

indicating its direction of travel. This aesthetic 
aspect was partly influenced by a similar but more 
complicated simulator, SimbotCity. [4] 
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Fig 1: (a-c) various attractive/repellant force/distance curves 
 (d) predator repulsion curve. 



Once the simulation is run, each agent considers 
each other agent within its sensor range, calculates 
its relative distance and orientation and determines 
the corresponding aggregative force it exerts on the 
agent in question. The total of these forces 
determines how the agent accelerates and in which 
direction. The agent is moved accordingly, and the 
process is repeated for the next “step,” and 
aggregative behavior is demonstrated using a series 
of discretely determined steps. 

Friction is considered – for each step, the velocity 
is decreased by 2% to prevent agents from 
accelerating to infinity or spiraling out of control. A 
collision detection clause prevents agents from 
passing through each other: when the distance 
between two agents decreases to the sum of their 
radii each experiences a stronger repulsive force. 

Owing to these factors, the agents eventually 
aggregate to form one or more swarm clusters. This 
simulator effectively models simple sensor-based 
mobile robots exhibiting collective robotic 
intelligence with no explicit communication. 

 
Fig 2. “Red Herring” swarm modeling applet  

 

V. CLUSTER CHARACTERISTICS 

HE nature of these clusters depends on the 
various swarm parameters. The greater the 

population density, the greater the chance that 
separate developing clusters would merge together 
to form a single one. The greater the equilibrium 
distance, the higher the chance of pulling stray 
agents into the cluster. Increasing sensor range 
meant that more agents were likely to interact with 
other agents and thus form smaller numbers of large 
clusters. Trials are conducted to determine 
correlation between population density and relative 
cluster size. 

Trials are all conducted on a playing field of 
640x468 ˜ 3*105 ˜ c pixels. Population density is 
thus listed as 1, 2, 3… to represent 1 agent per c 
pixels, 2 agents per c pixels, etc. – or simply, 1 
agent per playing field, 2 agents per playing field, 

and so forth. 10 trials are conducted for each 
population density. 

Trials show that relative cluster size (average 
cluster size divided by population) approaches 1 
after an initial downward spike due to sparse agent 
distribution leading to frequent clusters of 1 or 2 
agents. (Fig 3a) Similarly, the total number of 
clusters exhibited an initial spike owing to large 
numbers of 1- or 2-agent clusters, followed by a 
gradual decline towards 1 as population density 
increased to the point where few agents were left 
outside of sensor range. (Fig 3b) 

 
Fig 3. a) relative cluster size vs. population 
 b) number of clusters vs. population 

 
A more elaborate and harder to quantify cluster 

characteristic is dynamic vs. static equilibrium. For 
sufficiently large equilibrium distances, all agents 
would eventually find a stable equilibrium position, 
usually forming a configuration which 
geometrically optimized distances between all agent 
pairs. (Fig 4a) If the equilibrium distance was 
relatively small however compared to agent radius 
(here 5 pixels), the agents would be unable to find a 
stable equilibrium point and hover around each 
other continually searching for one. The clusters 
formed would be stable as a whole, but individual 
agents were constantly in motion and did not form 
the geometrically optimal configurations of static 
equilibrium conditions. (Fig 4b) The distinction 
between the two can be made analogous to fish 
school formations – static equilibrium corresponds 
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to normal swimming, and dynamic equilibrium to a 
tightly-packed ball formation. 

These simple analyses are straightforward and 
somewhat intuitive, but important in outlining the 
logic of the attractant-repellant swarm model. This 
model demonstrates that a very simple set of rules – 
indeed, just one equation – can adequately explain 
the clustering behavior of many social animals 
without examining the agents in motion, a state 
which I have omitted for the sake of clarity and 
simplicity. 

 

 
Fig 4. a) static equilibrium   b) dynamic equilibrium 

 

VI. PREDATOR AVOIDANCE 

NOTHER property of aggregative swarms 
occurring in nature is predator avoidance 

technique. Schools of fish split, rejoin, explode, 
contract, and swirl around predators to evade and 
confuse them in a dazzling feat of synchronized 
swimming. (Fig 5) [7] Such maneuvers are part of 
an array of defense tactics employed by fish 
schools, and are considered emergent evolutionary 
behavior. [7] 

I have further developed my “Red Herring” 
swarm modeling applet to incorporate simple 
predator avoidance techniques. Each agent now not 
only considers interaction forces of all other agents 

in its range, but also those of a special agent named 
“predator” which travels in a straight line 
unaffected by the presence of other agents (I have 
added the ability to steer the predator as per the 
advice of a friend, but opted not to allow it to eat 
the other agents in a PacMan-like fashion). All 
other agents are only repelled by the predator if it is 
in their sensor range, by a function as the inverse 
square of the distance between them. This equation 
was used despite its divergence from the original 
linear force-distance relationship of agent-agent 
interaction to illustrate the importance of not being 
eaten by predators. 
 

Fig. 5 examples of coordinated movement and directed activity. 

 
While being unable to model directed activity 

predator avoidance techniques such as flash 
expansion and hourglass, agents in “Red Herring” 
exhibited a variety of interesting behavior, 
including herding, (Fig 6a) splitting, (Fig 6b) 
avoiding, (Fig 6c) and even vacuole. (Fig 6d) I have 
not conducted rigorous analysis on predator 
avoidance due to its overwhelming scale; statistical 
analysis of random aggregation and predator 
approach arrangements seems somewhat unfeasible. 
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Fig 6. agent behavior: a) herding  b) splitting  c) avoiding  d) vacuole 
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VII. CONCLUSION 

INALLY, I have shown how a simple rule-set 
can govern seemingly complex behavior in a 

swarm of autonomous agents. What we can draw 
from this is that it is feasible to use simple control 
methods in a distributed, delocalized manner to 
dictate autonomous agent behavior. Inexpensive 
robots with minimalist sensor arrangements could 
conceivably use such aggregation techniques with 
minimal intelligence and simple behavior-based 
decision-making, and ultimately give rise to more 
complex collective swarm intelligence. 
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